Druckansicht der Internetadresse:

Physikalisches Institut an der Universität Bayreuth

Fakultät für Mathematik, Physik und Informatik

Seite drucken

In „Nature Communications“: Atomare Terahertz-Schwingungen lösen das Rätsel ultrakurzer Solitonen-Moleküle 

zur Übersicht


Universität Bayreuth, Pressemitteilung Nr. 057/2022 vom 21.04.2022

Stabile Pakete von Lichtwellen – sogenannte optische Solitonen – werden in Ultrakurzpuls-Lasern als eine Kette von Lichtblitzen ausgestrahlt. Diese Solitonen verbinden sich oft zu Paaren mit sehr kurzen zeitlichen Abständen. Anhand von atomaren Schwingungen im Terahertz-Bereich haben Forscher*innen der Universitäten Bayreuth und Wrocław jetzt das Rätsel gelöst, wie diese zeitlichen Verknüpfungen entstehen. In „Nature Communications“ berichten sie über ihre Entdeckung. Die Dynamik der aneinander gekoppelten Lichtpakete kann genutzt werden, um Atomschwingungen als charakteristische “Fingerabdrücke“ von Materialien extrem schnell zu vermessen.

In Ultrakurzpuls-Lasern können optische Solitonen besonders enge räumliche und zeitliche Verbindungen eingehen. Diese werden auch als ultrakurze „Solitonen-Moleküle“ bezeichnet, weil sie ähnlich wie die chemisch gebundenen Atome eines Moleküls stabil aneinander gekoppelt sind. Die Forschungsgruppe in Bayreuth verwendete einen weitverbreiteten Festkörperlaser aus einem mit Titanatomen versehenen Saphirkristall, um herauszufinden, wie diese Kopplung entsteht. Zunächst bewirkt ein einzelner vorauseilender Lichtblitz, dass die Atome im Kristallgitter des Saphirs in ultraschnelle Schwingungen geraten. Diese charakteristischen Schwingungen liegen im Terahertzbereich und klingen innerhalb von wenigen Pikosekunden wieder ab (eine Pikosekunde entspricht einer Billionstel Sekunde). In dieser extrem kurzen Zeitspanne ändert sich der Brechungsindex des Kristalls. Folgt nun unmittelbar ein zweiter Lichtblitz und holt den ersten ein, so spürt er diese Veränderung: Er wird von den Atomschwingungen nicht nur leicht beeinflusst, sondern auch stabil an das vorausgehende Soliton gebunden. Ein „Solitonen-Molekül“ ist geboren.

„Der von uns entdeckte Mechanismus beruht auf den physikalischen Effekten der Raman-Streuung und Selbstfokussierung. Er erklärt eine Vielzahl von Phänomenen, die der Wissenschaft seit der Erfindung von Titan-Saphir-Lasern vor über 30 Jahren Rätsel aufgegeben haben. Das besonders Spannende an der Entdeckung ist dabei, dass wir die Dynamik der Solitonen während ihrer Erzeugung im Laserresonator jetzt dazu ausnutzen können, um atomare Bindungen in Materialien extrem schnell abzutasten. Die gesamte Messung eines sogenannten Intracavity-Raman-Spektrums dauert jetzt weniger als eine Tausendstel Sekunde. Diese Erkenntnisse können dazu beitragen, besonders schnelle chemisch-sensitive Mikroskope zu entwickeln, mit denen Materialien identifiziert werden können. Darüber hinaus eröffnet der Kopplungsmechanismus neue Strategien, um Lichtpulse durch Atombewegungen zu steuern und umgekehrt einzigartige Materialzustände durch Lichtpulse zu erzeugen“, erklärt Juniorprofessor Dr. Georg Herink, Leiter der Studie und Juniorprofessor für Ultraschnelle Dynamik an der Universität Bayreuth.

Parallel zur Analyse experimenteller Daten ist es den Forscher*innen gelungen, ein theoretisches Modell für die Solitonendynamik zu entwickeln. Das Modell ermöglicht es, die in Experimenten gewonnenen Beobachtungen zu erklären und neuartige Effekte von Atomschwingungen auf die Dynamik von Solitonen vorherzusagen. Die Wechselwirkungen von Solitonen in optischen Systemen und ihre Anwendungen für die Hochgeschwindigkeits-Spektroskopie werden gegenwärtig im Rahmen des DFG-Forschungsprojekts FINTEC an der Universität Bayreuth untersucht.

Veröffentlichung:

  • Alexandra Völkel, Luca Nimmesgern, Adam Mielnik-Pyszczorski, Timo Wirth, Georg Herink
    Intracavity Raman Scattering couples Soliton Molecules with Terahertz Phonons
    Nature Communications 13, 2066 (2022)
    DOI: 10.1038/s41467-022-29649-y

Prof. Dr. Georg Herink
Ultraschnelle Dynamik

Telefon: +49 (0)921 / 55-3161
E-Mail: georg.herink@uni-bayreuth.de
Web: https://www.ultrafast.uni-bayreuth.de

Gebäude Naturwissenschaten II (NW II)

Christian Wißler
Stellv. Pressesprecher, Wissenschaftskommunikation

Telefon: +49 (0)921 / 55-5356
E-Mail: christian.wissler@uni-bayreuth.de

Facebook Youtube-Kanal Instagram LinkedIn UBT-A Kontakt & Anreise